Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 220: 115143, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574804

RESUMEN

After Fundão Dam failure in 2015, most of Gualaxo do Norte River in Doce River Basin in Brazil became silted by iron mining tailings consisting mainly of fine-grained quartz, hematite, and goethite. Previous work pointed to the possibility of reductive dissolution of iron and manganese from tailings, leading to mobilization of iron, manganese and trace elements. Several microorganisms were shown to reduce Fe(III) to Fe(II) and Mn(III, IV) to Mn(II) "in vitro", but their roles in mobilization of Fe and trace elements from freshwater sediments are poorly understood. In this work, bottom sediments and water collected in Gualaxo do Norte River were used to build anoxic microcosms amended with acetate, glucose or yeast extract, in order to access if heterotrophic microorganisms, either fermenters or dissimilatory Fe reducers, could reduce Fe(III) from minerals in the sediments to soluble Fe(II), releasing trace elements. The Fe(II) concentrations were measured over time, and trace elements concentrations were evaluated at the end of the experiment. In addition, minerals and biopolymers in bottom sediments were quantified. Results showed that organic substrates, notably glucose, fuelled microbial reduction of iron minerals and release of Fe(II), Mn, Ba, Al and/or Zn from sediments. In general, higher concentrations of organic substrates elicited mobilization of larger amounts of Fe(II) and trace elements from sediments. The results point to the possibility of mobilization of huge amounts of iron and trace elements from sediments to water if excess biodegradable organic matter is released in rivers affected by iron mine tailings.


Asunto(s)
Oligoelementos , Contaminantes Químicos del Agua , Hierro , Compuestos Férricos , Manganeso , Monitoreo del Ambiente , Minerales , Ríos/química , Agua , Compuestos Ferrosos , Brasil , Contaminantes Químicos del Agua/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-21531611

RESUMEN

In this investigation, Raman spectroscopy with 1064 and 632.8 nm excitation was used to investigate real mineral samples of bauxite ore from mines of Northern Brazil, together with Raman mapping and X-rays diffraction. The obtained results show clearly that the use of microRaman spectroscopy is a powerful tool for the identification of all the minerals usually found in bauxites: gibbsite, kaolinite, goethite, hematite, anatase and quartz. Bulk samples can also be analysed, and FT-Raman is more adequate due to better signal-to-noise ratio and representativity, although not efficient for kaolinite. The identification of fingerprinting vibrations for all the minerals allows the acquisition of Raman-based chemical maps, potentially powerful tools for process mineralogy applied to bauxite ores.


Asunto(s)
Óxido de Aluminio/análisis , Minerales/análisis , Espectrometría Raman/métodos , Brasil , Compuestos Férricos/análisis , Compuestos de Hierro/análisis , Caolín/análisis , Cuarzo/análisis , Titanio/análisis , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...